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Abstract 

 

The use of a circular-wedge link pair as a manipulator joint allows for versatility and flexibility in 

positioning. In particular, its use allows for repeatable, precise, and versatile alignment of 

mechanical components and has the potential for the configuration and development of adaptable 

serpentine robots. This paper explores the feasibility of using macrometric circular-wedge links to 

attain nanometric capable positioners. The forward and inverse kinematics of these positioners 

configured with two macroscopic circular-wedge links is described. The results show that the 

workspace defined by these rotationally constrained positioners is essentially planar in nature. The 

achievable planar range of motion is three orders of magnitude greater than the nanometric motion 

in the out-of-plane direction. This novel positioner has the potential to satisfy the need for 

nanometric capable positioning and motion where accuracy, repeatability and versatility are 

required.  
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Configuración de un Posicionador Robótico Nanométrico 
 

Resumen 

 

El uso de un par de cuñas-circulares como una articulación de un manipulador permite lograr 

versatilidad y flexibilidad en posicionamiento.  En particular, su uso permite lograr la alineación de 

componentes mecánicos con repetitividad, precisión y versatilidad, teniendo el potencial para la 

configuración y desarrollo de robots serpentinos adaptables. Este articulo explora la factibilidad de 

usar cuñas circulares macrométricas articuladas para obtener posicionadores capaces de 

movimientos nanométricos. Se describe la cinemática directa e inversa de estos posicionadores con 

dos cuñas circulares. Los resultados demuestran que el espacio de trabajo definidos por estos 

posicionadores constreñidos rotacionalmente es esencialmente plano. El movimiento realizable en 

el plano es tres órdenes de magnitud mayor, que el movimiento nanométrico en la dirección fuera 

del plano. Este novedoso posicionador tiene el potencial de satisfacer las necesidades para 

posicionamiento nanométrico y movimiento en donde se requiere precisión, repetitividad y 

versatilidad.   

 

Palabras clave: Cuña-circular; robots serpentinos; posicionador nanométrico 
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Configuração de um robô de posicionamento nanométrico 

 
Resumo 

 

O uso de um par de cunhas circulares como uma junta de uma alça permite versatilidade e 

flexibilidade no posicionamento. Em particular, seu uso permite alcançar oalinhamentodos 

mechanicos com repetitividade, precisão e versatilidade, tendo o potencial para a configuração e 

desenvolvimento de robôs serpentinos adaptativos. Este artigo explora a viabilidade do uso de 

cunhas circulares macrométricas articuladaspara obter posicionadores capazes de movimentos 

nanométricos. Descreve acinemática direta e inver sadesses posicionadores com duas cunhas 

circulares.   Os resultados mostram que o espaço de trabalho definido por esses posicionadores com 

restrição rotativa é essencialmente plano. O movimento executável no avião é trêsprovações de 

magnitude maior, do que o movimento nanométrico narecção  difora do plano. Este posicionador 

inovador tem o potencial de atender às necessidades de posicionamento e movimento nanométricos 

onde precisão, repetibilidade e versatilidade são necessárias. 

 

Palabras clave: Cunha circular; robôs serpentinas; posicionamento nanométrico 

 

 

 

Introduction and Objectives 

 

The use of circular-wedge links in a remotely 

controllable actuator system (Harwood 1973) is known. 

Also, previous work by the author shows that the use of 

a duplicate pair of dissimilar wedged discs to achieve 

alignment of surfaces is an approach that satisfies the 

need for repeatable, accurate, precise, versatile and 

inexpensive alignment of mechanical components 

(Cardenas-Garcia, Suryanarayan, and Ingalls 1999). A 

natural extension is to use a large number of circular-

wedge links to structure a highly versatile and flexible 

serpentine robot (Cardenas-Garcia and Preidikman 

2005). Numerous applications for serpentine robots 

exist in space-based maintenance; inspections of 

enclosed areas which are difficult to examine requiring 

enhanced flexibility and reachability, especially in 

convoluted environments; search and rescue 

operations; exploring rough terrain; swimming in 

contaminated water; and manipulation in places too 

dangerous for humans. These serpentine structures are 

robust to mechanical failure if designed to be modular 

and highly redundant (Hirose 1993; McKerrow 1991).  

The main objective of this paper is to explore the 

feasibility of using macro-scale circular-wedge links to 

achieve nano-metric positioning. 

 

Theoretical Background 

 

This section outlines the forward kinematics of the 

positioner by means of homogenous transformations 

(Bejczy 1975; Denavit and Hartenberg 1955; 

Gutkowski and Kinzel 1995) and the inverse 

kinematics of a two-link positioner by an algebraic 

approach (Kucuk and Bingul 2006). 

 

The Basic Assembly Element: The Forward 

Kinematics of the Circular-Wedge Link 

 

Figure 1 shows a single circular-wedge link and the 

associated coordinate systems. Three different 

coordinate systems are identified in order to transfer the 

local description of vector PL in coordinate system (x2, 

y2, z2) to the global coordinate system (x, y, z) described 

by vector PG. In equation form, 

 

𝑷𝐺 = 𝑷0 + 𝑷𝐿    (1) 

 

 

 

Figure 1. The Coordinate Systems Associated with 

a Single Circular-wedge Link 
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What this requires is that several homogeneous 

transformations be performed on the local vector PL to 

arrive at the global vector PG, i.e., the forward 

kinematics for a single circular-wedge link is given by, 

 

 

𝑷𝐺 = 𝑅[𝜃𝑦1]𝑇[ℎ1]𝑅[𝜃𝑧1]𝑷𝐿  (2) 

 

where 𝑅[𝜃𝑦1] represents the homogeneous 

transformation for rotation about the y-axis, which is 

used to rotate Link 1 about said axis; 𝑇[ℎ1] the 

homogeneous transformation for translation along the 

y-y1-axis, which is used to account for the thickness of 

Link 1 at its center; and 𝑅[𝜃𝑧1] is the homogeneous 

transformation for rotation about the z1-z2-axis, which 

is used to account for the wedge angle inclination of 

Link 1. These homogeneous transformations take the 

form for Link 1 of the [4 x 4] matrices defined as 

follows: 

 

𝑅[𝜃𝑧1] = [

𝑐𝜃𝑧1 −𝑠𝜃𝑧1 0 0

𝑠𝜃𝑧1 𝑐𝜃𝑧1 0 0

0
0

0
0

1 0
0 1

]  (3a) 

 

 

𝑇[ℎ1] = [

1 0 0 0
0 1 0 ℎ1
0
0

0
0

1 0
0 1

]  (3b) 

 

 

𝑅[𝜃𝑦1] = [

𝑐𝜃𝑦1 0 𝑠𝜃𝑦1 0

0 1       0      0
−𝑠𝜃𝑦1
0

0
0

𝑐𝜃𝑦1 0

   0         1

] (3c) 

 

 

Note that the sine and cosine of the alluded angles are 

represented in abbreviated notation as 𝑠𝜃𝑧1, 𝑠𝜃𝑦1  and 

𝑐𝜃𝑧1 , 𝑐𝜃𝑦1, respectively. Additionally, the translational 

distance h1 is the vertical distance that separates the 

O(x, y, z) from the O1(x1, y1, z1)-O2(x2, y2, z2) set of axes. 

If the radius of the circumference that defines the 

bottom surface of Link 1 is R, then the distance h1 takes 

the form 

 

ℎ1 = (ℎ0)1 + 𝑅 𝑡𝑎𝑛[𝜃𝑧1]  (4) 

 

where (ℎ0)1 is the thickness of the circular-wedge link 

at its narrowest, and 𝜃𝑧1 is the circular-wedge link 

angle. Additionally, for the geometry shown in Figure 

1, PL = {Px Py Pz 1}T with respect to the local O2(x2, y2, 

z2)-axis.  

 

 

 
2(a) Increments of 0.5-degrees 

 
2(b) Increments of 1.0-degrees 

Figure 2. Trajectory of a Point PL = {0 1E-3 0 1} m 

for a Single Circular-wedge Link System 

 

Figures 2(a) and 2(b) show the 5-bit or 32-point circular 

trajectory, for a full rotation of a circular-wedge link 

(0 ≤ 𝜃𝑦1 ≤ 360 𝑑𝑒𝑔), of the tip of PL with local 

coordinates (0, 1E-3, 0) m in the Global O(x, y, z) 

coordinate system, for the single circular-wedge link 

with dimensions R = 10E-3 m and (h0)1 = 1E-3 m 

shown in Figure  1.  

Figure 2(a) shows the variation of the trajectory for five 

wedge angle increments of 𝜃𝑧1 = 0.5 𝑑𝑒𝑔, starting at a 

value of 0.5 deg. Figure 2(b) shows the variation of the 

trajectory for five wedge angle increments of 𝜃𝑧1 =

1.0 𝑑𝑒𝑔, starting at a value of 1.0 deg. An overlapping 

square symbol shows the position at which the motion 

of the trajectory begins, in each case. In effect, Figures 

2(a) and 2(b) show the comparison of the motion that is 

achievable by 12 different circular-wedge links 

reflecting different wedge angles. Since the limits of 
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the x, y- and z-axes of both Figures are the same, there 

are common trajectories at values of 𝜃𝑧1 =

1.0, 2.0 𝑎𝑛𝑑 3.0 𝑑𝑒𝑔.  

Each circular trajectory depicted in Figures 2(a) and 

2(b) is represented by 5-bit or 32-discrete points to 

simulate the use of a stepper motor to repeatedly access 

the locations shown in the graph, for each of the 

represented circular-wedge links. Using stepper motors 

allows for precise positioning and repeatability of 

movement since good stepper motors have an accuracy 

of 3 to 5% of a step and this error is non-cumulative 

from one step to the next2. The tip of PL for 𝜃𝑧1 =

1.0 𝑑𝑒𝑔 describes a circular trajectory with a radius of 

about 1.7452E-5 m at a height of 2.1744E-3 m. The 

separation between points is 3.2740E-06 m, which 

shows the potential for achieving nanometric 

positioning, i.e., an 8-bit or 256-step per revolution 

stepper motor achieves a separation between points of 

4.2805E-7 m. 

 

The Forward Kinematics of the Double Circular-

Wedge Link System 

 

 

Figure 3. The Coordinate Systems Associated with 

Two Circular-wedge Links 

 

Figure 3 show the configuration associated with a 

system of two circular-wedge links, which may or may 

not be duplicates. The full description of the {4 x 1} 

global vector PG which defines the forward kinematics 

of the system using two circular-wedge links is given 

by,  

 

𝑷𝐺 = 𝑅[𝜃𝑦1]𝑇[ℎ1]𝑅[𝜃𝑧1]𝑅[𝜃𝑦2]𝑇[ℎ2]𝑅[𝜃𝑧2]𝑷𝐿      (5) 

 

 
2 http://www.omega.com/prodinfo/stepper_motors.html; Accessed: 

March 19, 2021. 

The homogeneous transformations associated with 

Link 2 take the form 

 

𝑅[𝜃𝑧2] = [

𝑐𝜃𝑧2 −𝑠𝜃𝑧2 0 0

𝑠𝜃𝑧2 𝑐𝜃𝑧2 0 0

0
0

0
0

1 0
0 1

]  (6a) 

 

𝑇[ℎ2] = [

1 0 0 0
0 1 0 ℎ2
0
0

0
0

1 0
0 1

]  (6b) 

 

𝑅[𝜃𝑦2] = [

𝑐𝜃𝑦2 0 𝑠𝜃𝑦2 0

0 1       0      0
−𝑠𝜃𝑦2
0

0
0

𝑐𝜃𝑦2 0

   0         1

]. (6c) 

 

It is possible to show that by changing the pertinent 

variables, e.g., setting (h0)1  = 0 m; 𝜃𝑧1 = 0.0 𝑑𝑒𝑔, or 

alternatively (h0)2  = 0 m; 𝜃𝑧2 = 0.0 𝑑𝑒𝑔, you eliminate 

either the bottom (Link 1) or top (Link 2) circular-

wedge link, respectively, to reproduce a single wedge 

system, and corroborate the calculations performed and 

shown in Figures 2(a) and 2(b).  

Assuming a duplicate circular-wedge link with the 

same characteristics as the first, it is possible to 

examine different trajectories that the tip of PL defined 

in local coordinates as PL = {0 L 0 1}T = {0 1E-3 0 1}T 

m describes. Figures 4(a)-4(d) represent the trajectories 

that the tip of PL follows depending on the motion of 

the circular-wedge links, using diagrams whose axes 

are represented in different scales. Similarly, an 

overlapping square symbol shows the position at which 

the motion of the trajectory begins, in each case. 

Figure 4(a) shows the resulting trajectory for the 5-bit 

or 32-step stepping motion of only Link 1 (Bottom), 

with Link 2 (Top) held motionless. The result is a 

circular trajectory of the tip of PL. Figure 4(b) shows 

the resulting trajectory for the 5-bit or 32-step stepping 

motion of only Link 2 (Top), with Link 1 (Bottom) held 

motionless. As expected, the circular trajectory of the 

tip of PL lies on a plane at an angle (equivalent to the 

circular-wedge angle 𝜃𝑧2 = 1.0 𝑑𝑒𝑔) to the xz-plane. 

Figure 4(c) shows the resulting trajectory for the 5-bit 

or 32-step stepping motion of Link 2 (Top), with the 2-

bit or 4-step stepping motion of Link 1 (Bottom). The 

motion of Link 1 (Bottom) allows the creation of the 

four (2-bit) distinct circles whose shape is defined by 

the motion of Link 2 (Top) and corresponds to the 5-bit 

or 32-step stepping motion of said Link 2 (Top). Figure 

http://www.omega.com/prodinfo/stepper_motors.html
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4(d) shows a similar result as that of Figure 4(c), except 

that Link 1 (Bottom) undergoes a 3-bit or 8-step 

stepping motion.  

What is common to Figures 4(b)-4(d) is that Link 1 

(Bottom) undergoes a different number of steps, i.e., 0-

bit, 2-bit and 3-bit, respectively. The vertical motion 

per revolution of 6.0917E-7 m along the y-axis remains 

the same for all of these figures, while the reach in the 

xz-plane changes as the number of steps of Link 1 

(Bottom) changes. Figure 5 is a plot of the sinusoidal 

variation of the in-plane displacements and the out-of-

plane displacements shown in Figure 4(b). The in-plane 

displacements, in the x- (green line) and z- (red line) 

directions, are plotted using the vertical reference axis 

on the right of the plot. The out-of-plane displacements, 

in the y- direction, are plotted using the vertical 

reference axis on the left of the plot. The reference point 

for these displacements is the square blue marker 

symbol (shown at the lowest of the red dot marker 

symbols) in Figure 4(b) that define the path of the tip 

trajectories of PL in the global x-y-z frame of reference. 

The path of x-displacements, in Figure 5, has been 

shifted-up by an amount equal to the minimum value of 

x-displacements added to the average value of x-

displacements. This is done so as to have the variation 

in x-displacements be centered at zero. The x- and z- 

displacements are 90-degrees out of phase, while the y- 

and z- displacements are in phase.  

 

 
4(a) Link 1 = 25; Link 2 = 20 

 

 
4(c) Link 1 = 22; Link 2 = 25 

 

 
4(b) Link 1 = 20; Link 2 = 25 

 
4(d) Link 1 = 23; Link 2 = 25 

Figure 4. Double Circular-wedge Link System 

Trajectory of a Point PL = {0 1E-3 0 1} m (𝜃𝑧)1 = 

(𝜃𝑧)2 = 1-deg 
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Figure 5. Double Circular-wedge Link System Out-

of-plane and In-plane Displacements (𝜃𝑧)1 = (𝜃𝑧)2 

= 1-deg 

 

Figures 6(a)-6(d) are results that are parallel to those of 

Figures 4(a)-(d). They show the superposition of 

additional results when 𝜃𝑧1 = 𝜃𝑧2 assumes values of 1-, 

2- and 3-deg. The paths of the tip trajectories of PL 

increasing in size with increasing circular-wedge angle. 

The significance of these graphs is to show that 

nanometric positioning along the y-axis is feasible, 

especially if the number of steps per revolution can be 

increased by an order of magnitude. This would require 

increasing the number of steps from 5-bits to 8- or more 

bits. The number of additional steps not only creates 

additional points in 3D-space but increases the 

resolution of these reachable points. In order to have 

control overreaching specified points in space, the 

inverse kinematics of this two-circular-wedge link 

system needs to be assessed, e.g., along a straight line, 

by the precise positioning of the stepping algorithm. 

The next section addresses the inverse kinematics of 

this two-circular-wedge link system.  

 

 
6(a) (𝜃𝑧)1 = 1-, 2- and 3-degrees 

Link 1 = 25; Link 2 = 20 

 
6(c) Link 1 = 22; Link 2 = 25 

 
6(b) Link 1 = 20; Link 2 = 25 

 
6(d) Link 1 = 23; Link 2 = 25 

 

Figure 6. Double Circular-wedge Link System 

Trajectory of a Point PL = {0 1E-3 0 1} m (𝜃𝑧)1 = 

(𝜃𝑧)2 = 1-deg; 2-deg; 3-deg 

 

 

The Inverse Kinematics of the Double Circular-

Wedge Link System 

 

Equation 5 defines the forward kinematics problem for 

the double circular-wedge link system, i.e., given the 

position of a point on the positioner in a local frame of 

reference, it is possible to determine the position of that 

point at any and all possible positions determined by 



Cárdenas-García 

 

Veritas & Research, Vol. 3, N° 1, 2021, 60-72  66 

ISSN 2697-3375 

 

the elements of the double circular-wedge link system 

in a global frame of reference. The inverse problem 

requires that for any identified point on the positioner 

in the global frame of reference, we be able to identify 

the precise orientations of the circular-wedges to arrive 

at said point.  

Re-writing Equation 5, for ease of algebraic 

calculation, as follows 

 

𝑷𝐺 = 𝑅𝑇𝑅[𝜃𝑦1 , ℎ1 , 𝜃𝑧1  ]𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑷𝐿.     (7) 

 

We find that  

 

𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ] =

[
 
 
 
𝑐𝜃𝑦2𝑐𝜃𝑧2 −𝑐𝜃𝑦2𝑠𝜃𝑧2 𝑠𝜃𝑦2 0

𝑠𝜃𝑧2 𝑐𝜃𝑧2       0    ℎ2
−𝑠𝜃𝑦2 𝑐𝜃𝑧2

0

𝑠𝜃𝑦2𝑠𝜃𝑧2
0

𝑐𝜃𝑦2 0

   0      1 ]
 
 
 

 

(8) 

 

Which multiplied by PL = {0 L 0 1}T, yields 

 

𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑃𝐿 = 

[
 
 
 
𝑐𝜃𝑦2𝑐𝜃𝑧2 −𝑐𝜃𝑦2𝑠𝜃𝑧2 𝑠𝜃𝑦2 0

𝑠𝜃𝑧2 𝑐𝜃𝑧2       0    ℎ2
−𝑠𝜃𝑦2  𝑐𝜃𝑧2

0

𝑠𝜃𝑦2𝑠𝜃𝑧2
0

𝑐𝜃𝑦2 0

   0      1 ]
 
 
 

{

0
𝐿
0
1

}

 (9) 

or, 

 

𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑃𝐿 =

{
 

 
−𝐿 𝑐𝜃𝑦2𝑠𝜃𝑧2
𝐿 𝑐𝜃𝑧2 + ℎ2
𝐿 𝑠𝜃𝑦2𝑠𝜃𝑧2

1 }
 

 
 

 (10) 

 

An equation similar to Equation 8 may also be written 

for Link 1 as follows,  

 

𝑅𝑇𝑅[𝜃𝑦1 , ℎ1, 𝜃𝑧1  ] =

[
 
 
 
𝑐𝜃𝑦1𝑐𝜃𝑧1 −𝑐𝜃𝑦1𝑠𝜃𝑧1 𝑠𝜃𝑦1 0

𝑠𝜃𝑧1 𝑐𝜃𝑧1       0    ℎ1
−𝑠𝜃𝑦1  𝑐𝜃𝑧1

0

𝑠𝜃𝑦1𝑠𝜃𝑧1
0

𝑐𝜃𝑦1 0

   0      1 ]
 
 
 

 

 (11) 

 

to obtain the final equation for PG 

 

𝑷𝐺 = 𝑅𝑇𝑅[𝜃𝑦1 , ℎ1 , 𝜃𝑧1  ]𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑷𝐿 =

{
 

 
𝑃𝐺𝑥
𝑃𝐺𝑦
𝑃𝐺𝑧
1 }
 

 
 

  (12) 

 

which results in, 

 

𝑷𝐺 =

{
 

 
𝑃𝐺𝑥
𝑃𝐺𝑦
𝑃𝐺𝑧
1 }
 

 
=

{
 

 
−𝐴 𝑐𝜃𝑦1  𝑐𝜃𝑦2 − (𝐵 + 𝐶) 𝑐𝜃𝑦1 +𝐷 𝑠𝜃𝑦1𝑠𝜃𝑦2

−𝐸 𝑐𝜃𝑦2 + 𝐹

𝐴 𝑠𝜃𝑦1𝑐𝜃𝑦2 + 𝐺 𝑠𝜃𝑦1 + 𝐷 𝑐𝜃𝑦1𝑠𝜃𝑦2
1 }

 

 

 (13) 

 

where the following terms define the geometry of the 

double circular-wedge link system and are taken as 

constants, 

 

𝐴 = 𝐿 𝑐𝜃𝑧1𝑠𝜃𝑧2   (14a) 

 

𝐵 = 𝐿 𝑠𝜃𝑧1𝑐𝜃𝑧2   (14b) 

 

𝐶 = ℎ2𝑠𝜃𝑧1    (14c) 

 

𝐷 = 𝐿 𝑠𝜃𝑧2   (14d) 

 

𝐸 = 𝐿 𝑠𝜃𝑧1𝑠𝜃𝑧2    (14e) 

 

𝐹 = 𝑐𝜃𝑧1 [𝐿 𝑐𝜃𝑧2 + ℎ2] + ℎ1 (14f) 

 

𝐺 = 𝑠𝜃𝑧1 [𝐿 𝑐𝜃𝑧2 + ℎ2]  (14g) 

 

The solution to the system of Equation 13 may be 

obtained: since the components of PG are known, 

subtracting the value of each component yields a 

nonlinear function whose roots may be found using a 

numerical solver. Appendix A shows a solution for 𝜃𝑦2  

from the equation for 𝑃𝐺𝑦 using the fzero solver in 

Matlab®. This solution results in the value for 𝜃𝑦2 , 

which then allows using either the nonlinear equation 

for 𝑃𝐺𝑥 or for 𝑃𝐺𝑧 to obtain a solution for 𝜃𝑦1 . 

Substitution of these values in the forward kinematics 

equations allows reproduction of PG. 

 

The Forward Kinematics of the Triple Circular-

Wedge Link System 

 

Equation (7) may easily be extended to add a third 

circular-wedge link to obtain, 

 

𝑷𝑮 = 

𝑅𝑇𝑅[𝜃𝑦1 , ℎ1 , 𝜃𝑧1 ]𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑅𝑇𝑅[𝜃𝑦3 , ℎ3 , 𝜃𝑧3 ]𝑷𝑳 =  

 

{
 

 
𝑃𝐺𝑥
𝑃𝐺𝑦
𝑃𝐺𝑧
1 }
 

 
  (15) 
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7(a) Link 1 = 25; Link 2 = 20; Link 3 = 20 

 
7(b) Link 1 = 20; Link 2 = 20; Link 3 = 25 

 
7(c) Link 1 = 20; Link 2 = 22; Link 3 = 25 

 

7(d) Link 1 = 22; Link 2 = 22; Link 3 = 25 

Figure 7. Triple Circular-wedge Link System 

Trajectory of a Point PL = {0 1E-3 0 1} m (𝜃𝑧)1 = 

(𝜃𝑧)2 = (𝜃𝑧)3 = 1-deg 

 

The Matlab® implementation of this equation leads to 

the results shown in Figure 7(a)-(d) for three circular-

wedge links. The bottom, middle and top circular-

wedge link are identified as Link 1 through Link 3, 

respectively. Figures 7(a) and 7(b) parallel the earlier 

results of Figure 4(a) and 4(b), respectively. Figure 7(a) 

shows the result of keeping the three circular-wedge 

links fixed relative to one another, while allowing for a 

5-bit or 32-step stepping motion of the bottom circular-

wedge link or Link 1.  

Figure 7(b) is the result of keeping the bottom two 

circular-wedge links (Links 1 and 2) fixed relative to 

one another, while allowing for a 5-bit or 32-step 

stepping motion of the top circular-wedge link or Link 

3.  

Figure 7(c) keeps Link 1 static while allowing a 2-bit 

or 4-step stepping motion of Link 2 and allowing a 5-

bit or 32-step stepping motion of the top circular-wedge 

link or Link 3.  

Last, Figure 7(d) shows the path of the tip trajectories 

of PL for a 2-bit or 8-step stepping motion of Links 1 

and 2, and the 5-bit or 32-step stepping motion of Link 

3. 

The Forward Kinematics of the Quadruple Circular-

Wedge Link System 

 

The further extension of Equation (15) to incorporation 

of a fourth circular-wedge link results in, 

 

𝑃𝐺 = 𝑅𝑇𝑅[𝜃𝑦1 , ℎ1 , 𝜃𝑧1  ] … 

 

𝑅𝑇𝑅[𝜃𝑦2 , ℎ2, 𝜃𝑧2 ]𝑅𝑇𝑅[𝜃𝑦3 , ℎ3 , 𝜃𝑧3 ] …  

𝑅𝑇𝑅[𝜃𝑦4 , ℎ4 , 𝜃𝑧4 ]𝑃𝐿 =

{
 

 
𝑃𝐺𝑥
𝑃𝐺𝑦
𝑃𝐺𝑧
1 }
 

 
 (16) 

 

The results are shown in Figures 8(a)-(d), where 

correspondingly the various circular-wedge links 

starting at the bottom are again numbered 

consecutively from 1 to 4. There is no particular reason 

as to the choice of number of steps to achieve the paths 

of the tip trajectories of PL portrayed in Figures 8(a)-

(d), except to point out that an increasing number of 

steps per circular-wedge link are used. For ease of 

reference we use the notation [0 2 2 5] to refer to the 

bits of stepping motion portrayed in Figure 8(a). 
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Similarly, the notation for Figures 8(b)-8(d) are [2 2 2 

5], [3 2 2 5] and [4 2 2 5], respectively. The density of 

the points rapidly increases to allow a very high density 

of workspace coverage and redundancy.  

 

 
8(a) Link 1 = 20; Link 2 = 22; Link 3 = 22; Link 4 = 

25 

 
8(c) Link 1 = 23; Link 2 = 22; Link 3 = 22; Link 4 = 

25 

 
8(b) Link 1 = 22; Link 2 = 22; Link 3 = 22; Link 4 = 

25 

 
8(d) Link 1 = 24; Link 2 = 22; Link 3 = 22; Link 4 = 

25 

Figure 8. Quadruple Circular-wedge Link System 

Trajectory of a Point PL = {0 1E-3 0 1} m (𝜃𝑧)1 = 

(𝜃𝑧)2 = (𝜃𝑧)3 = (𝜃𝑧)4 = 1-deg 

 

 

 

The Nanometric Robotic Workspace 

 

The main emphasis above has been to demonstrate the 

solution of the forward and inverse kinematics of the 

double circular-wedge link system to get a preliminary 

assessment of the potential for nanometric positioning. 

This section examines in greater detail whether or not 

that potential may be realized for the double circular-

wedge link system.  

 

The Double Circular-Wedge Link System 

 

Table 1 summarizes the parameters associated with a 

double circular-wedge link system that have an impact 

on the size and characteristics of the system workspace, 

except for the Radius of the circular-wedge. The Radius 

of the circular wedge does not play a role in defining 

the workspace because the motion of the circular-

wedges is rotatory. This implies that the range of 

component sizes that the system design may 

incorporate for use as circular-wedges can be 

macroscopic, but depending on the application, 

microscopic circular-wedges may also be used. The 

potential for use of macroscopic components allows for 

the utilization of relatively large motors, gearing and 

other mechanical components in proof of concept 

designs.  

 

Results  

 

This section details achieving nanometric-capable 

motions with a double circular-wedge link system. 

Table 1 shows the parameters that are used in the 

calculations below. It is worth noting that the 
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dimensions of a typical 1.0E-2 m radius circular-wedge 

with a dimension of its smallest circular-wedge height 

h0 = 1.0E-3 m yields an opposite side dimension of 

1.3491E-3 m, which is reasonable from an additive 

manufacturing perspective. 

 

Table 1. 

Parameters that define a double circular-wedge 

link system 

 
 

The preliminary calculations portrayed in Figure 4(b) 

for 𝜃𝑧1 = 𝜃𝑧2 = 1.0 𝑑𝑒𝑔, show that the tip of PL 

describes a circular trajectory with a radius of about 

1.7452E-5 m in a plane at an inclination of 1-deg from 

the xz-plane. The separation between points is 

3.4213E-6 m, showing the potential for achieving 

nanometric positioning. For example, an 8-bit or 256-

step per revolution stepper motor achieves a separation 

between points of 4.2834E-7 m, or 428.34 nm.  

 

The calculations for the results portrayed in Figure 4(d) 

for a [3 8] (Link 1 = 23; Link 2 = 28) double circular-

wedge link system is summarized in Table 2. Table 2 

shows the range of motion that may be achieved, in the 

x-, z- and y- directions, for circular-wedge link angle  

𝜃𝑧1 = 0.5 and 1.0 𝑑𝑒𝑔; with link 

angle ratio that varies three orders of magnitude from 

0.1 to 10, for each of these circular-wedge link angles. 

The calculations highlighted in yellow for 𝜃𝑧1 = 𝜃𝑧2 =

1.0 𝑑𝑒𝑔 , i.e., for a link angle ratio of 1, show that the 

range of motion in the x- and z-directions is 1.1080E-4 

m, while the range in the y-direction is 6.0612E-6 m, 

which is approximately three orders of magnitude less. 

Thus, the motion of the tip of PL describes a relatively 

flat workspace in which the xz-plane 

motion is approximately 3-orders of magnitude greater 

that the out-of-plane motion. The out-of-plane motion 

shown in Figure 4(d) is shown exaggerated due to the 

choice of units that are different from the x- and z-axes. 

The same general observations hold for link angle 

ratios of 0.1 and 10.

 

Table 2. 

Calculations for a double circular-wedge link system Link 1 = 23; Link 2 = 25 

 
 

Table 3.  

Calculations for a double circular-wedge link system considering 8-bit stepping capability Link 1 = 23; 

Link 2 = 25 
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Table 3 includes the same highlighted data as Table 2 

but normalized to the number of steps achievable with 

an 8-bit stepper motor. Singling out the highlighted 

potion of Table 3, the per step resolution is 4.3280E-7 

m in the xz-plane and 2.3796E-9 m in the out-of-plane 

or y-direction. Similar general observations hold for 

link angle ratios of 0.1 and 10. If this double circular-

wedge link system is used as a means to push and 

retrieve an object only in the y-direction, the capability 

of nanometric resolution is easily achievable, with great 

precision in per step resolution. 

 

Figure 9(a)-(d) shows the results for a double circular-

wedge link system with 𝜃𝑧1 = 1.0 𝑑𝑒𝑔 and 𝜃𝑧2 =

4.0 𝑑𝑒𝑔, or a link angle ratio of 4. This arrangement is 

for a workspace density of 25 x 26 or 2,048 steps in the 

xz-plane utilizing a 5-bit and 6-bit stepper motor 

driving, the bottom and top circular-wedge links, 

respectively. The maximum y-displacement from the 

lowest to highest point is 2.4290E-6 m. Figure 9(a) 

shows the result of only allowing the bottom link or 

Link 1 to move through 25/4 = 8 of its possible steps; 

while the top link or Link 2 is allowed only 26/2 = 32 

of it steps, allowing Link 2 to describe only a semi-

circular path. The end result is the superposition of 8 

semi-circles that are offset from each other. Figure 9(b) 

shows the result of superposing 16 semi-circles. 

Finally, Figures 9(c) and 9(d) show the result of the 

superposition of 32 semi-circles in 2D and 3D, 

respectively. The versatility of this type of robotic 

arrangement is apparent from these graphs. Potentially, 

for an 8-bit stepper motor driving each of the links it 

would be possible to populate the workspace with 

65,536 points. 

 

 

9(a) Link 1 = 25/4; Link 2 = 26/2 

 
9(b) Link 1 = 25/2; Link 2 = 26/2 

 
9(c) Link 1 = 25; Link 2 = 26/2 

 
9(d) Link 1 = 25; Link 2 = 26/2 

Figure 9. Double Circular-wedge Link System 

Trajectory of a Point PL = {0 1E-3 0 1} m (𝜃𝑧)1 = 

1-deg; (𝜃𝑧)2 = 4-deg 

 

Summary and Conclusions 

 

The use of several circular wedges to configure a 

robotic manipulator is a non-obvious arrangement of 

elements that allows for versatility and flexibility in 

positioning. Additionally, it has the potential, when 
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using stepper motors, for repeatable, accurate and 

precise motion. Also, depending on the parameters that 

define the basic structure of the modular circular-

wedges, the motion that is obtainable ranges from the 

macrometric to the nanometric scale. The main 

objective of this paper has been to explore the 

feasibility of using macro-scale circular-wedge links to 

achieve nano-metric positioning.  

The forward and inverse problems of using a double 

circular-wedge link system has been explored, as well 

as a preliminary look at systems that involve three and 

four circular-wedge links. What is apparent from the 

various implemented simulations is that the workspace 

that is defined is in general  

planar. The achievable planar motion is several orders 

of magnitude greater than the out-of-plane motion. The 

details of actual implementation of a system is left for 

future work. 
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Appendix A 

 

Matlab® Code to find the roots of a nonlinear function 

 

% Read in needed data 

% 

[n,k,L,thetaZ1,thetaZ2,p2,height1,height2] = data;   

% Calculation of angles in radians 

% 

thetaZ1 = thetaZ1*pi/180; thetaZ2 = thetaZ2*pi/180; 

% Calculation of needed constants 

% 

A = L*cos(thetaZ1)*sin(thetaZ2);  

B = L*sin(thetaZ1)*cos(thetaZ2); 

C = height2*sin(thetaZ1); D = L*sin(thetaZ2); 

E = L*sin(thetaZ1)*sin(thetaZ2);  

F = cos(thetaZ1)*(L*cos(thetaZ2) + height2) + height1; 

https://doi.org/10.1115/1.2829458
https://doi.org10.1115/1.2826135
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G = sin(thetaZ1)*(L*cos(thetaZ2) + height2); 

%   Calculation of randomly generated step for the TOP disk 

% 

j = fix(rand(1)*k);    % TOP DISK 

thetay2 = 180 + offsety2 - (j-1)*(360/(k-1)); 

%  Calculation of randomly generated step for the TOP disk 

% 

i = fix(rand(1)*n);    % BOTTOM DISK 

thetay1 = 180 + offsety1 - (i-1)*(360/(n-1)); 

%   Calculation of the Global Position of the point of interest 

% 

x1 = - cos(thetay1*pi/180)*cos(thetay2*pi/180)*A - …  cos(thetay1*pi/180)*(B + C) ... 

    + sin(thetay1*pi/180)*sin(thetay2*pi/180)*D; 

y1 = - cos(thetay2*pi/180)*E + F; 

z1 = sin(thetay1*pi/180)*cos(thetay2*pi/180)*A + … sin(thetay1*pi/180)*G … 

+ cos(thetay1*pi/180)*sin(thetay2*pi/180)*D; 

% 

%   Use of fzero - to obtain the Root of the nonlinear function % for the y-component PG 

% 

f = @(x) [y1 + cos(x)*E - F]; 

yy = fzero(f,2); yyy = yy*180/pi; 

% Comparison of assumed and calculated values 

 [thetay2 yyy]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


